В индукционных установках тепло в электропроводном нагреваемом теле выделяется токами, индуктированными в нем переменным электромагнитным полем.
Преимущества индукционного нагрева по сравнению с нагревом в печах сопротивления:
Индукционный нагрев широко применяется для:
В индукционных нагревательных установках индуктором создается электромагнитное поле, оно наводит в металлической детали вихревые токи, наибольшая плотность которых приходится на поверхностный слой детали, где и выделяется наибольшее количество тепла. Это тепло пропорционально мощности, подведенной к индуктору, и зависит от времени нагрева и частоты тока индуктора. Путем соответствующего выбора мощности, частоты и времени действия нагрев может быть произведен в поверхностном слое разной толщины либо по всему сечению детали.
Индукционные нагревательные установки по способу загрузки и характеру работы бывают периодического и непрерывного действия. Последние могут встраиваться в поточные и автоматические технологические линии.
Поверхностная индукционная закалка, в частности, заменяет такие дорогостоящие операции поверхностного упрочнения, как цементация, азотирование и др.
Цель индукционной поверхностной закалки: получение высокой твердости поверхностного слоя при сохранении вязкой середины детали. Для получения такой закалки производят быстрый нагрев детали на заданную глубину током, индуцированным поверхностным слоем металла с последующим охлаждением.
Глубина проникновения тока в металл зависит от частоты, то поверхностная закалка требует различных толщин закаливаемого слоя.
Различают следующие виды индукционной поверхностной закалки:
Одновременная индукционная закалка – заключается в одновременном нагреве всей закаливаемой поверхности с последующим охлаждением поверхности. Индуктор и охладитель удобно совместить. Применение лимитируется мощностями питающего генератора. Нагреваемая поверхность не превышает 200-300 см2.
Одновременно-поочередная индукционная закалка – характерна тем, что отдельные части нагреваемой детали нагреваются одновременно-поочередно.
Непрерывно-последовательная индукционная закалка – применяется в случае большой протяженности закаливаемой поверхности и заключается в нагреве участка детали при непрерывном движении детали относительно индуктора либо наоборот. Охлаждение поверхности следует за нагревом. Возможно применение отдельных охладителей или совмещенных с индуктором.
На практике идея индукционной поверхностной закалки реализуется в индукционных закалочных станках.
Различают специальные индукционные закалочные станки, предназначенные для обработки определенной детали или групп деталей, незначительно отличающихся размеров и универсальные индукционные закалочные станки – для обработки любых деталией.
Закалочные станки включают следующие элементы:
Универсальные индукционные закалочные станки снабжаются устройствами для закрепления деталей, их передвижения, вращения, возможность для замены индуктора. Конструкция закалочного индуктора зависит от вида поверхностной закалки и от формы закаливаемой поверхности.
В зависимости от вида поверхностной закалки и конфигурации деталей используют различные конструкции закалочных индукторов.
Индуктор состоит из индуктирующего провода, который создает переменное магнитное поле, токоподводящих шин, контактных колодок для соединения индуктора с источником питания, трубок для подачи и отвода воды. Для закалки плоских поверхностей применяют одно и многовитковые индукторы.
Существует индуктор для закалки внешних поверхностей цилиндрических деталей, внутренних плоских поверхностей и т.д. Бывают цилиндрические, петлевые, спирально-цилиндрические и спирально плоские. При низких частотах индуктор может содержать магнитопровод (в ряде случаев).
Источниками питания закалочных индукторов средней частоты служат электромашинные и тиристорные преобразователи, обеспечивающие рабочие частоты до 8 кГц. Для получения частоты в диапазоне от 150 до 8000 Гц используют машинные генераторы. Могут быть использованы преобразователи на основе управляемых вентилей. Для более высоких частот используют ламповые генераторы. В области повышенной частоты используют машинные генераторы. Конструктивно генератор объединяют с приводным двигателем в единый преобразовательный агрегат.
Для частоты от 150 до 500 Гц применяются обычные многополюсные генераторы. Они работают на высоких скоростях вращения. Обмотка возбуждения, расположенная на роторе, питается через контакт кольца.
Для частоты от 100 до 8000 Гц используют индукторные генераторы, ротор которых не имеет обмотки.
В обычном синхронном генераторе обмотка возбуждения, вращаясь с ротором, создает в статорной обмотке знакопеременный поток, то в индукторном генераторе вращение ротора приводит к пульсации магнитного потока, сцепленного с магнитной обмоткой. Применение индукционного генератора на повышенной частоте объясняется конструктивными трудностями генераторов, работающих на частоте > 500 Гц. В таких генераторах трудно разместить многополюсные обмотки статора и ротора, привод осуществляется асинхронными двигателями. При мощностях до 100 кВт обычно обе машины объединяют в одном корпусе. Большая мощность – два корпуса. Индукционные нагреватели и закалочные агрегаты могут получать питание от машинных генераторов по схеме индукционного питания или центрального.
Индукционное питание выгодно, когда генератор полностью загружается одной установкой, которая работает непрерывно в металлических установках сквозного нагрева.
Центральное питание – при наличии большого количества нагревательных установок, работающих циклически. В этом случае возможна экономия установленной мощности генераторов за счет неодновременной работы отдельных нагревательных установок.
Генераторы используют обычно с самовозбуждением, которые могут обеспечивать мощность до 200 кВт. Такие лампы работают при анодном напряжении 10-15 кВ, для охлаждения анодных ламп рассеиваемой мощности более 10 кВт применяется водяное охлаждение.
Для получения высоких напряжений обычно используют мощные выпрямители. Мощность, отдаваемая установкой. Часто регулируют, регулируя выходное напряжение выпрямителя и используя надежную экранировка коаксиальных кабелей для передачи высокочастотной энергии. При наличии неэкранированных нагревательных постов должно быть использовано дистанционное управление, а также механические автоматические работы с целью исключения нахождения персонала в опасной зоне.
Никто пока не комментировал эту страницу.