Токоведущие части электрических установок и отдельных аппаратов должны быть надежно изолированы одни от других и от земли. Для выполнения этих функций и крепления токоведущих частей используют различные изоляторы, которые подразделяются на станционные, аппаратные и линейные.
Станционные и аппаратные изоляторы применяют для крепления и изоляции шин в распределительных устройствах электрических станций и подстанций или соответственно токоведущих частей аппаратов. Эти изоляторы, в свою очередь, подразделяются на опорные и проходные. Последние устанавливают при проходе шин через стены и перекрытия внутри помещений, а также при выводе их из зданий или применяют для вывода токоведущих частей из корпусов аппаратов.
Линейные изоляторы служат для крепления проводов воздушных электрических линий и шин открытых распределительных устройств.
Изоляторы должны удовлетворять следующим требованиям: обеспечивать достаточную электрическую прочность, определяемую напряженностью электрического поля (кВ/м), при которой материал изолятора теряет свойства диэлектрика, обладать достаточной механической прочностью, дающей возможность противостоять динамическим усилиям, которые возникают между отдельными токоведущими частями при коротком замыкании в цепи, обеспечивать неизменность своих свойств под влиянием окружающей среды (дождь, снег и т. п.), обладать достаточной теплостойкостью, то есть не изменять своих электрических свойств при изменении температуры в определенных пределах, иметь поверхность, устойчивую против воздействия электрических разрядов.
К электрическим характеристикам изоляторов относятся: номинальное и пробивное напряжения (минимальное напряжение, при котором происходит пробой изолятора), разрядные и выдерживаемые напряжения промышленной частоты в сухом состоянии (сухо-разрядное, при котором происходит перекрытие по поверхности изолятора без потери изоляционных качеств) и под дождем (мокро-разрядное, по смоченной поверхности изолятора), импульсные 50 %-ные разрядные напряжения обеих полярностей.
К основным механическим характеристикам изоляторов относятся: минимальная (номинальная) разрушающая нагрузка (в ньютонах), приложенная к головке изолятора в направлении, перпендикулярном оси, а также размеры и масса.
Линейные изоляторы предназначены для изоляции и крепления проводов на воздушных линиях и в распределительных устройствах электрических станций и подстанций. Изготавливаются они из фарфора или закаленного стекла. По конструкции изоляторы разделяют на штыревые и подвесные.
Штыревые изоляторы применяются на воздушных линиях напряжением до 1 кВ и на ВЛ 6-35 кВ (35 кВ - редко и только для проводов малых сечений). На номинальное напряжение 6-10 кВ и ниже изоляторы изготавливают одноэлементными, а на 20-35 кВ - двухэлементными.
Подвесной изолятор тарельчатого типа наиболее распространен на воздушных линиях напряжением 35 кВ и выше. Подвесные изоляторы состоят из фарфоровой или стеклянной изолирующей части и металлических деталей – шапки и стержня, соединяемых с изолирующей частью посредством цементной связки.
Для воздушных линий в районах с загрязненной атмосферой разработаны конструкции изоляторов грязестойкого исполнения с повышенными разрядными характеристиками и увеличенной длиной пути утечки.
Подвесные изоляторы собирают в гирлянды, которые бывают поддерживающими и натяжными. Первые монтируют на промежуточных опорах, вторые – на анкерных. Число изоляторов в гирлянде зависит от напряжения линии. Например, в поддерживающих гирляндах воздушных линий с металлическими и железобетонными опорами 35 кВ должно быть 3 изолятора, 110 кВ – 6 – 8, 220 кВ – 10 - 14 и т. д..
Штыревые изоляторы крепятся на опорах при помощи крюков или штырей. Если требуется повышенная надежность, то на анкерные опоры устанавливают не один, а два и даже три штыревых изолятора.
Станционные и аппаратные изоляторы, как и линейные, в большинстве случаев изготовляют из фарфора, который наиболее полно отвечает предъявляемым требованиям. Ряд деталей аппаратов, выполняющих функции изоляции, особенно находящихся внутри кожухов и в некоторых случаях залитых изоляционным маслом, изготавливают из бакелита, гетинакса и текстолита.
Для крепления изолятора к основанию и шин или токоведущих частей аппаратов к изолятору используют металлическую арматуру, то есть металлические части, закрепленные на фарфоре. Арматуру закрепляют на фарфоре чаще всего при помощи различного рода цементирующих замазок с коэффициентом объемного теплового ресширения, близким к коэффициенту фарфора. В целях улучшения качества изоляторов их фарфоровый корпус с внешней стороны покрывают глазурью.
В зависимости от рода установки используют изоляторы для внутренней или наружной установки. Изоляторы для наружной установки имеют более развитую поверхность, благодаря которой увеличивается микроразрядное напряжение, что обеспечивает надежную работу под дождем, а также в загрязненном состоянии.
Изоляторы на разные номинальные напряжения отличаются активной высотой фарфора, а на разные разрушающие механические усилия - диаметром.
Опорные изоляторы можно разделить на опорно-стержневые и опорно-штыревые. Опорные-стержневые изоляторы имеют сплошной или полный фарфоровый стержень с выступающими ребрами.
Арматура изоляторов, рассчитанных на значительную механическую нагрузку, состоит из овальных или квадратных фланцев с отверстиями для болтов снизу и металлических головок с нарезными отверстиями для крепления проводника сверху.
Изоляторы, рассчитанные на меньшую механическую нагрузку, не имеют фланцев и головок. У них предусмотрены металлические фасонные вкладыши с резьбовыми отверстиями, укрепленные в углублениях фарфорового стержня. Эти изоляторы благодаря внутренней заделке арматуры имеют меньшие размеры и массу.
Изоляторы для внутренней установки на напряжение до 35 кВ серии ОФ имеют коническое фарфоровое тело с одним или двумя небольшими ребрами. Опорно-стержневые изоляторы для наружной установки серии ОНС отличаются от рассмотренных более развитыми ребрами. Их изготавливают для напряжений 10 - 110 кВ.
Опорно-штыревые изоляторы серии ОНШ предназначены для наружной установки. Они имеют фарфоровое тело с далеко выступающими ребрами (крыльями) для защиты от дождя. Изолятор укрепляют на основании при помощи чугунного штыря с фланцем. Сверху предусмотрен чугунный колпак с нарезными отверстиями для крепления токоведущих частей.
Проходные изоляторы для внутренней установки на напряжение до 35 кВ имеют полый фарфоровый корпус с небольшими ребрами. Для крепления изолятора в перекрытии (стене) на средней его части предусмотрен фланец, а на торцах для крепления проводника - металлические колпаки. Проходные изоляторы с номинальным током до 2000 А снабжены стержнями прямоугольного сечения.
Изоляторы на ток 2000 А и выше, так называемые «шинные», поставляются без стержней. Эти изоляторы на торцах имеют колпаки специальной конструкции, удерживающие стальные планки с прямоугольными вырезами, через которые пропускается токоведущая шина.
Фланцы и колпаки у изоляторов с большим номинальным током (обычно более 1000 А) изготавливают из немагнитных материалов - чугуна специальных марок, силумина - для избежания дополнительных потерь из-за индуктированных токов.
Проходные изоляторы, одна часть которых работает на открытом воздухе, а другая - в закрытом помещении или в масле, как, например, проходные изоляторы трансформаторов и масляных выключателей, делают несимметричными. Часть фарфорового корпуса, работающая на воздухе, имеет более развитые ребра.
Проходные изоляторы на напряжение 110 кВ и выше, так называемые «вводы», кроме фарфоровой, имеют маслобарьерную или в более новых конструкциях бумажно-масляную изоляцию. В последнем случае на токоведущий стержень наложены слои кабельной бумаги с проводящими прокладками из алюминиевой фольги между ними (конденсаторный ввод). Конденсаторный ввод обеспечивает равномерное распределение потенциала как вдоль оси, так и в радиальном направлении. Эти вводы обычно герметизированы.
Никто пока не комментировал эту страницу.