Комбинированные блоки питания БПК-3(4). Контрольные испытания на надежность

26 декабря 2014 в 16:00

Комбинированные блоки питания БПК-3(4).  Контрольные испытания на надежность

Серийное производство блоков БПК-3(4) [1], заменивших выпускавшиеся ранее блоки БПК-1(2), началось в 1999 году. Длительное время объем выпуска БПК-3(4) был незначительным, например в 2005 году было выпущено всего 11 блоков БПК-4 и 51 блок БПК-3.

Объем выпуска этих изделий (рис. 1) изменялся в соответствии с изменением количества подстанций на переменном оперативном токе, в которых данные блоки применяют для обеспечения бесперебойного питания цифровых устройств РЗА.

 

Если принять за единицу количество изделий, выпущенных в 2006 году, то к концу 2014 года в эксплуатации находится количество изделий, соответствующих:

  • 21,34 годового выпуска изделий БПК-4 в 2006 году;
  • 12,63 годового выпуска изделий БПК-3 в 2006 году.

В 2014 году производство блоков БПК-3(4) прекращено, но до сих пор в эксплуатации находятся блоки, выпущенные ещё в 1999 году.

В 2011 году были проведены контрольные испытания на надежность комбинированных блоков питания этой серии, в результате которых установлено, что с начала выпуска по май 2011 года возвращено на предприятие 14 блоков БПК-3, при чем 2 из них – необоснованно.

Изменение общего количества блоков БПК-3, находящихся в эксплуатации и их суммарной наработки показано на рис. 2.

Наработка изделий, достигнутая к моменту первого отказа, а также количество изделий, находившихся в эксплуатации в данный момент, приняты за единицу.

 

Среднее время от отгрузки до возврата Тср для каждого из 12 возвращенных блоков БПК-3, составило 19,3 мес (Табл. 1).

Таблица 1 Время возврата блоков БПК-3 (4) с 1999 по 2011

Характеристика БПК-3 БПК-4
Среднее время возврата Твозвр.ср, мес 3,3 4,6
Медиана T возвр мед, мес 0,0 0,0
Дисперсия времени возврата, σ'возвр 29,15 34,05
Среднеквадратическое отклонение, σвозвр 5,16 5,75

С начала выпуска по май 2011 года на предприятие возвращено 63 блока БПК-4, при чем 26 из них – необоснованно.

Изменение общего количества блоков БПК-4, находящихся в эксплуатации и их суммарной наработки показано на рис. 3. Наработка изделий, достигнутая к моменту первого отказа, а также количество изделий, находившихся в эксплуатации в данный момент, как и ранее, приняты за единицу.

 

а)

б)


Блоки БПК-4 отличаются от блоков БПК-3 наличием дополнительного узла – платы заряда и сигнализации (рис. 4) [2], осуществляющей заряд внешнего конденсатора. Энергию, запасённую в этом конденсаторе, используют для управления выключателем.

 

Если принять за единицу (рис. 5) количество блоков типа БПК-4, находящихся в эксплуатации к моменту возврата первого неисправного блока этого типа, то в момент возврата первого неисправного блока типа БПК-3 в эксплуатации находилось в 1,72 раза больше блоков этого типа, чем блоков БПК-4.

 

С начала выпуска по 2011 год было возвращено только 12 блоков типа БПК-3, поэтому информация с 13 по 37 возращенный блок типа БПК-4 на этом рисунке не приведена.

Одинаковые или близкие значения относительного количества блоков, приведенные над столбиками показывают, что в это время были возвращены блоки, заводские номера которых близки друг к другу.

Отношение числа блоков, по работе которых были высказаны обоснованные замечания (замечания, признанные производителем), к общему числу блоков, находящихся в эксплуатации на 2011 год составили:

  • 1,2% - для БПК-3;
  • 2,1% - для БПК-4.

Для дальнейшего анализа распределим признанные замечания по работе блоков к 10 группам, созданным для каждого типа блока.

В первую группу входят блоки с заводскими номерами от 1 до N, во вторую – от N+1 до М, в третью – от М+1 до Р и т.д. Таким образом, группы блоки организованы по хронологическому принципу.

Из-за разного количества выпущенных блоков каждого типа, в группу входят разное количество блоков. Если принять количество изделий, входящих в группу блоков типа БПК-3 равным 1, то в каждую группу блоков БПК-4 включено в 1,83 раза больше изделий соответствующего типа.

 

Из диаграммы, приведенной на рис. 6 видно, что максимальное количество замечаний поступило к работе блоков:

  • БПК-4, объединенных в 4-ю группу;
  • БПК-3, объединенных в 7-ю группу.

Необходимо отметить, что в это время количество блоков разных типов, находящихся в эксплуатации, отличалось менее, чем на 5%.

Можно предположить, что наличие этого платы заряда и сигнализации снижает надежность блока БПК-4 по сравнению с блоком БПК-3, так как помимо общих для обоих типов блоков неисправностям, в них возможны неисправности этой платы.

Оценим наработку блоков каждого типа в каждой из групп на момент проведения контрольных испытаний (рис. 7).

 

На момент проведения контрольных испытаний на надежность количество блоков БПК-4, находящихся в эксплуатации, превысило в 1,83 раза количество эксплуатирующихся блоков БПК-3, а суммарная наработка блоков БПК-4 больше суммарную наработку блоков БПК-3 в 1,23 раза.

Все это позволяет предположить, что количество возвращенных блоков БПК-4 из-за дефекта платы заряда и сигнализации может находиться в диапазоне от 15 (при сравнении количества блоков в эксплуатации) до 22 (при сравнении наработок) штук.

Анализ информации о причине возврата, содержащейся в актах исследования, показал, что только 16 блоков БПК-4 было возвращено из-за отказа платы заряда и сигнализации.

Сказанное позволяет обоснованно утверждать, что количество возвращенных блоков того или иного типа зависит прежде всего от количества блоков данного типа, находящихся в эксплуатации.

Определение наработки на отказ блоков БПК-3 и БПК-4 проводилось способом, описанным в [3, 4].

Продолжительность испытаний (время от даты ввода первого блока в эксплуатацию) до даты проведения контрольных испытаний в 2011 году составило 64 месяца для блоков БПК-3 и 63 месяца для блока БПК-4.

Контрольные испытания на надежность были проведены по одноступенчатому методу в предположении экспоненциального распределения средней наработки на отказ. При таком подходе испытания прекращают в том случае, когда будет достигнуто одно из значений – предельного количества неисправных изделий rпр или максимальное значение наработки tmax.

Так как эксплуатация изделий не прекращается, то при достижении одного из указанных значений делают вывод о соответствии или несоответствии декларированного значения средней наработки на отказ фактически полученному значению при обработке данных эксплуатации.

Действующими стандартами [5] объем выборки не регламентируется, но для контроля полученных результатов необходимо определять минимальное количество объектов испытаний N по формуле:

N= tmax / tи (1)

где tи – продолжительность испытаний.

Для блоков БПК-3 - tи = 64 мес, для блоков БПК-4 - tи = 63 мес

Результаты вычислений сведены в табл. 1.

Таблица 1 Минимально необходимое количество образцов для испытаний

при Тн = Тβ = 125000

блоков БПК-3
  rпр = 5 rпр = 10        
N= tmax/tи ~22 ~39        
блоков БПК-4
  rпр = 5 rпр = 10 rпр = 15 rпр = 20 rпр = 25 rпр = 30
N= tmax / tи ~22 ~39 ~56 ~72 ~87 ~103

На рис. 8 показано соотношение между расчетным (минимально необходимым) и фактическим количеством блоков, находящихся в эксплуатации при возврате 5, 10, 15 и т.д. изделия.

 

Таким образом, в любой момент проведения контрольных испытаний на надежность в эксплуатации находится количество блоков, превышающее минимально необходимое, требуемое стандартом [5].

Так как в статье невозможно привести все промежуточные расчеты, выполненные по рекомендациям стандарта, приведем только графики, иллюстрирующие изменение суммарной наработки блоков, находящихся в эксплуатации. Нижний график построенный по табличным данным, приведенным в стандарте [5], показывает изменение значения tmax в зависимости от количества замечаний по работе блоков при одинаковых рисках потребителя и поставщика β = α = 0,05 (рис. 9)

 

 

Графики показывают, что значение tΣ всегда превышает значение tmax при любом количестве возвращенных изделий.

Полученное таким образом значение наработки на отказ T0 = 125000 часов позволяет рассчитать вероятность безотказной работы за 2000 часов по формуле

(2)

Полученная во время контрольных испытаний на надежность позволяет оценить и гамма-процентный срок сохраняемости.

Метод оценки этой характеристики – непосредственное хранение - установлен в стандарте [6].

Девять блоков для испытаний по этому методу были отобраны из партии изделий, хранившиеся на складе входного контроля одного из потребителей.

Хранение блоков на складе осуществлялось с соблюдением всех требований, установленных в документации. Фактически срок хранения составил 18 месяцев.

После окончания хранения блоки были осмотрены и подвергнуты приемосдаточным испытаниям, которые подтвердили правильное функционирование блоков и их соответствие всем установленным требованиям.

В связи с отсутствием неисправных блоков использовать формулу, приведенную в стандарте [6] нецелесообразно, так как опытное значение гамма-процента независимо от числа испытываемых блоков n при отсутствии неисправных изделий, т.е. при d = 0 всегда будет равно 100%:

γ= (1- d/n) 100 = (1-0/9) 100 = 100% (3)

Поэтому воспользуемся таблицей 26 из [7], где для минимальной выборки из 8 изделий (испытывалось 9 изделий), в которой не было выявлено отказов (d=0), соответствует значение гамма-процента γ = 80% при доверительной вероятности q = 0,8.

Перед прекращением производства блоков БПК-3 (4) в связи с переходом на выпуск нового блока [8] был произведен анализ информации о производстве, испытаниях и результатах эксплуатации за 2014 и 2013 годы.

Диаграммы изменения выпуска блоков БПК-3 (4) по месяцам в 2013 и 2014 годах приведены на рис. 10.

 

а)

б)

 

Одномоменто прекратить выпуск блоков БПК-3(4) невозможно, так как использование этих блоков предусмотрено в проектах подстанций на переменном оперативном токе, выполненных после 2012 года. Поэтому выпуск этих изделий будет продолжаться ещё некоторое время, а объем выпуска будет зависеть от количества заказов. Учитывая это, особе внимание было обращено на анализ причин возврата блоков в 2014 году, что позволило составить диаграмму, показанную на рис. 11.

Наибольшее количество блоков (8 из 20, т.е. 40%) возвращено из-за повреждений, вызванных подачей напряжения, превышающего 264 В.

Ещё пять блоков возвращены из-за длительного хранения, причем условия хранения не соблюдались, а срок гарантийных обязательств к моменту возвращения истек. Блоки были отгружены в период с января по июль 2008, а возвращены 28 апреля 2014 года. Таким образом, срок хранения превысил 6 лет.

Ещё один блок был возвращен из-за повреждений, возникших при попытке ремонта изделия силами эксплуатирующего предприятия.

Таким образом, 70% изделий были возвращены по причинам, не имеющим отношения к их надежности.

 

Доля всех возвращенных блоков составила 0, 92%. Если исключить те блоки, чей возврат не связан с их надежностью, доля возвращенных блоков составили всего 0,28% .

Анализ информации о результатах проведения приемосдаточных испытаний всех изделий проводится регулярно. В связи с планируемым переходом на выпуск новых изделий и постепенный отказ от производства блоков БПК-3(4) особый интерес представляет информация о выявленном браке во время приемосдаточных испытаний блоков БПК-3(4) в 2013 году.

За этот год было забраковано 2,9% от всех предъявленных на испытания блоков БПК-3(4). Информация о причинах отбраковки блоков представлена на рис. 12.

 

Сразу следует обратить внимание, 42,9% процента изделий было забраковано по причине, не имеющей отношения к качеству изготовленного изделия. Для испытаний новых блоков БПК-5 было разработано новое универсальное стендовое оборудование, позволившее снизить затраты ручного труда на проведение приемосдаточных испытаний. Так как на этом оборудовании проводили испытания и блоков БПК-3(4), то практически 50% изделий БПК-3(4) были забракованы из-за отличия в методиках испытаний блоков БПК-3(4) и БПК-5.

Поэтому после устранения несоответствия между ранее действующей ПМ и результатами проверки на новом стенде, браковка блоков БПК-3(4) прекратилась.

Выводы.

  1. Экспериментальный метод оценки надежности по результатам эксплуатации позволил оценить такие показатели надежности, как наработка на отказ, вероятность безотказной работы и гамма-процентный срок сохраняемости.
  2. Анализ информации о причинах браковки блоков БПК-3(4) позволил откорректировать методики испытаний старых и новых изделий, повысив тем самым достоверность получаемых результатов.

Литература

  1. Захаров О.Г. Источники питания для схем с цифровыми устройствами релейной защиты. М.: НТФ «Энергопрогресс», 2011, 102 с. [Библиотечка электротехника, приложение к журналу «Энергетик». Вып. 2 (146)]
  2. Блоки серии БПК 3 (4)//[Электронный ресурс «Всё о РЗА»], режим доступа http://rza.org.ua/article/read/Bloki-serii-BPK-3--4-_115.html
  3. Захаров О.Г. Надежность цифровых устройств релейной защиты. Показатели. Требования. Оценки. М.: Инфра-Инженерия, 2014, 128 с.
  4. Гондуров С.А., Захаров О.Г. Способ оценки наработки на отказ по результатам эксплуатации для устройств релейной защиты и автоматики// СТА (Современные технологии автоматизации), №3, 2010, С. 88
  5. ГОСТ 27.410-87. Надежность в технике. Методы контроля показателей надежности и планы контрольных испытаний на надежность.
  6. ГОСТ 21493-76. Изделия электронной техники. Требования по сохраняемости и методы испытаний.
  7. РД 50-690-89. Методические указания. Надежность в технике. Методы оценки показателей надежности по экспериментальным данным.
  8. Блок питания комбинированный - БПК-5//[Электронный ресурс], режим доступа:http://www.mtrele.ru/shop/bloki_pitaniya_i_nakopiteli_energii/resheniya_dlya_obektov_s_peremennym_operativnym_tokom/bpk5/

 

 

3654
Закладки
Последние публикации
Комментарии 1
 

taras.apletin

По непонятным причинам часть иллюстраций в статье утрачена. Рекомендую обратиться к тексту, опубликованному в журнале "Компоненты и технологии" №3, 2016, С. 140 -
https://kit-e.ru/wp-content/uploads/176140.pdf

 
Написать комментарий
Можно не указывать
На этот адрес будет отправлен ответ. Адрес не будет показан на сайте
*Обязательное поле
Самые интересные публикации
Сейчас читают
Последние комментарии
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.
Комментарий проверяется
Текст комментария будет виден после проверки администратором.